
O
c

C
D

a

A
R
R
A
A

K
C
D
E
G
V
F

1

p
i
g
n
a

b
t
a
m
n
r
i
b
c
c
M

0
d

Journal of Power Sources 196 (2011) 10369– 10379

Contents lists available at ScienceDirect

Journal  of  Power  Sources

jo ur nal homep age: www.elsev ier .com/ locate / jpowsour

ptimal  decentralized  charging  control  algorithm  for  electrified  vehicles
onnected  to  smart  grid

hangsun  Ahn ∗,  Chiao-Ting  Li,  Huei  Peng
epartment of Mechanical Engineering, The University of Michigan, G041 Auto Lab. 1231 Beal Av., Ann Arbor, MI  48109, USA

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 9 June 2011
eceived in revised form 27 June 2011
ccepted 27 June 2011
vailable online 2 July 2011

eywords:
harging control
ecentralized control
lectrified vehicle

a  b  s  t  r  a  c  t

Electrified  vehicles  (EV)  and  renewable  power  sources  are  two  important  technologies  for  sustainable
ground  transportation.  If  left  unmitigated,  the additional  electric  load  could  over-burden  the  electric
grid.  Meanwhile,  a challenge  for integrating  renewable  power  sources  into  the  grid  lies in the  fact  their
intermittency  requires  more  regulation  services  which  makes  them  expensive  to  deploy.  Fortunately,
EVs  are  controllable  loads  and  the charging  process  can  be interrupted.  This  flexibility  makes  it  possible
to  manipulate  EV  charging  to  reduce  the  additional  electric  load  and  accommodate  the  intermittency  of
renewable  power  sources.  To illustrate  this  potential,  a  two-level  optimal  charging  algorithm  is designed,
which  achieves  both  load  shifting  and  frequency  regulation.  Load  shifting  can  be  realized  through  coor-
dination  of  power  generation  and  vehicle  charging  while  reducing  power  generation  cost  and  carbon
rid-to-vehicle (G2V)
alley-filling
requency regulation

dioxide  emissions.  To  ensure  practicality,  a decentralized  charging  algorithm  for  load  shifting  is  formu-
lated  by  emulating  the  charging  pattern  identified  through  linear  programming  optimization  solutions.
The  frequency  regulation  is also  designed  based  on  frequency  droop  that  can  be implemented  in a  decen-
tralized  way.  The  two  control  objectives  can  be integrated  because  they  are  functionally  separated  by time
scale.  Simulation  results  are  presented  to demonstrate  the  performance  of  the  proposed  decentralized
algorithm.

© 2011 Elsevier B.V. All rights reserved.
. Introduction

Electrified vehicles and renewable power sources are actively
ursued as clean energy technologies. However, the former can

ncrease the electric grid load during charging, which could stress
eneration and transmission systems. The latter are intermittent in
ature and can bring challenging regulation problems when they
re integrated with the grid.

In the past, increased electric demand has mostly been met  by
uilding extra centralized power plants. The electric infrastruc-
ure was designed to meet the peak demands which only occur

 few hundred hours each year in the US [1].  The peak power costs
ore because it uses more expensive fuels and have shorter run-

ing hours than the base powers do. If the peak demand can be
edistributed to less congested hours, such as during early morn-
ng, the additional plants for the peak power might not need to be
uilt. This is the so-called load shifting strategy. Electrified vehi-

les are controllable loads and can even be power sources (i.e., they
an return energy back to the grid) under extraneous situations [2].
ost EVs are plugged-in for long hours during the night, i.e., exactly

∗ Corresponding author. Tel.: +1 734 846 4288; fax: +1 734 647 9732.
E-mail address: sunahn@umich.edu (C. Ahn).

378-7753/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2011.06.093
during the valley hours of traditional electric grid. Therefore, we can
manipulate the charging pattern of EVs to achieve load shifting or
valley filling.

Regulation is a short time scale ancillary service usually con-
ducted by fast-reacting power sources. The power sources for
regulation respond to a system-operator’s request to track the
minute-by-minute fluctuations in system load and to respond
to unintended fluctuations in generator output [3].  They are
expensive to operate due to the stand-by characteristics of the
service and their responsiveness. When wind and solar power
sources are introduced, they require a higher level of regulation
services, resulting in increased regulation cost. One of the benefits
of EVs is their response time. Due to this characteristic, EVs can
replace some of the regulation service units.

Different approaches to realizing these two potential benefits
(load shifting and regulation) have been presented in the litera-
ture. The cases in which vehicles provide power to the grid, V2G
(vehicle-to-grid), have been studied [4,5]. A number of studies [6–9]
focused on the regulation capability of EV batteries and have shown
that V2G may  be beneficial to the grid operations, sometimes at the

expense of lower battery charging completion. Furthermore, these
approaches are based on a short time horizon and have not explored
long-term behaviors such as valley-filling or load shifting. Even
though the benefit of EV load shifting has been studied in many

dx.doi.org/10.1016/j.jpowsour.2011.06.093
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:sunahn@umich.edu
dx.doi.org/10.1016/j.jpowsour.2011.06.093
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Nomenclature

Acronyms
EV electrified vehicle
V2G vehicle to grid
AC alternating current
SOC state of charge
LP linear programming

Symbols
P power
�2, �3 time constants of power plants
kI, kp integral and proportional gains of a controller
ω frequency
H normalized inertial constant
D normalized damping constant
PEV charging power of EV
PEVmax the maximum charging power of EV
PnonEV non-EV power demand
PEV,SFT EV charging power that contributes demand shifting
PEV,REG EV charging power that contributes frequency reg-

ulation
PEV,REG EV charging power that contributes frequency reg-

ulation
NEV the number of EVs connected to the grid
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C(n) battery capacity of EV #n

apers [1,10–12], few papers have presented how to realize EV
oad shifting. Recently, some papers [13,14] have begun to design
on-centralized strategies for valley-filling. Ma  et al. [13] and Call-
way and Hiskens [14] showed that a demand dependent pricing
cheme drives a unique Nash equilibrium that results in valley-
lling. This algorithm works in a decentralized way  but requires
hat all vehicles have access to information of other vehicles and the
rid power generation, so the developed algorithm requires a lot of
ommunications. Furthermore, it does not provide a closed form of
he charging algorithm. In theory, a centralized controller can col-
ect full information of all EVs and all power plants, utilizing future
ower demand and control all vehicles/plants simultaneously for
ptimal performance. Such an approach, however, requires exten-
ive bi-directional communication and heavy computations and
hus is not desirable. A decentralized charging controller requires
maller amount of information to be collected and exchanged.
ost of the existing algorithms of load shifting are centralized and

hus require more infrastructure for implementation. Furthermore,
ost of them are based on thermal load [15,16] or air-conditioning

oad [17] control not on EV load control. Besides, most papers
6–9,13,14] on the V2G framework presented only one control
bjective, regulation or load shifting, but not both.

In our design, the decentralized and distributed charging con-
rollers receive a simple command from the centralized grid
ontroller and they only have access to the information from the
ocal vehicle (e.g., battery state of charge) and the local grid (e.g.,
C frequency). Designing such decentralized charging control algo-
ithms that achieve near-optimal performance (compared to a
entralized controller) is the goal and the main contribution of this
aper. In this paper, we present a decentralized charging control
lgorithm that minimizes electricity generation cost and carbon
ioxide emissions. The algorithm also regulates charging power to
itigate uncertainties due to renewable power sources. The con-
roller is developed with two separate time scales: a load shifting
lgorithm on a long time scale and a frequency regulation algorithm
n a short time scale. Effects of the two algorithms are sepa-
ated due to time scale and the algorithms can be easily combined
Fig. 1. Average non-EV power demand profile of the DTE service area.

without compromising their performance. The remainder of the
paper is organized as follows: the problem is defined in Section 2;
the design of the load shifting algorithm is explained in Section 3;
the frequency regulation algorithm is presented in Section 4; the
integration and overall structure and performance of the controller
are presented in Sections 5 and 6; and finally a conclusion is given
in Section 7.

2. Problem statement

2.1. Grid and demand

In this paper, the area supported by DTE Energy in Michigan is
used to determine the size the power generation and load [18]. The
electric power demand in this area varies between 5000 MW and
8000 MW,  with the summer load higher than the winter load due to
air-conditioning. Peak electric demand occurs around 2 pm in the
summer and 7 pm in the winter. The lowest demand occurs around
4 am.  The hourly power demand profiles for typical summer and
winter days are shown in Fig. 1, where the load below 5500 MW
is defined as the base load, the load between 5500 and 7200 MW
is defined as intermediate load, and above 7200 MW is defined as
peak load. The summer profile will be used for this paper. The same
design process of course can be used for the winter load.

2.2. Generation units and frequency dynamics

All electric grid systems have multiple types of generation
sources. The first type is base load sources that have the cheapest
operating cost. The second type is load following units which are
used to make up the difference between the demand and the base
load power. The third type of power sources are regulation units
and are used for frequency regulation. The characteristics of the
three types of power sources are summarized in Table 1. The base
load power plants are assumed to follow a planned profile and be
the same as the forecasted power demand. The load following units
and regulation units are modeled as first order systems controlled
by an integral controller and a proportional controller, respectively
[19], as shown in Eqs. (1) and (2)

P1 = Pplanned, P2 = 1
1 + �2s

Pfollow, P3 = 1
1 + �3s

Preg, (1)

where P1, P2 and P3 are the power output from the three types
of power source. �2 and �3 are the time constants for the second
and third type of power plants. The power generation strategy to
regulate the frequency is simplified as follows:∫

Pfollow = −kI �ω  dt, Preg = −kp�ω,  (2)

where kI and kp are control gains designed to stabilized the system
and �ω is a deviation from the desired frequency value, 60 Hz in
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secondary objective is to reduce the dependency of conventional
regulation plants. To accomplish the objectives, the EV loads have to
be shifted to the valley hours to minimize the operation of the peak
ig. 2. Power demand profile when the charging of the 2 M EVs are unmitigated
charging at the maximum power level immediately after plug in).

S. The frequency of the grid is modeled as first-order rotational
ynamics, as follows:

 ω̇ + Dω = Pm − Pe, (3)

here H is the inertial constant in normalized (per) unit, D is a
amping coefficient in per unit, Pm = P1 + P2 + P3 is the total power

nput to the grid and Pe is the total electric power demand.

.3. Electrified vehicles and commuting patterns

The number of EVs is assumed to be two million, which is about
5% of the registered passenger vehicles in Michigan. The commut-

ng pattern of the vehicle owners is assumed as follows: the owners
eave home for work at 7:20 am with 2 h of standard deviation; they
eturn home around 4:30 pm with 4.3 h of standard deviation; the
attery state of charge (SOC) when plugged-in is also described by

 normal distribution with a mean of 0.5 and a standard deviation
f 0.1; the vehicles are charged only during the night (not at work).
he mean and standard deviation of the commuting patterns are
ased on the traffic count data from Interstate Highway 5 [20]. The
attery capacity is assumed to be 16 kWh, all vehicle are assumed
o be charged by level-I chargers at 110 V/15 A, and the allowed SOC
ange is assumed to be 0.3–0.85.

If we simulate a scenario where every EV starts charging at maxi-
um power at the moment they are plugged in, the charging power
ill add to the grid load, as shown in Fig. 2. The additional EV
emand increases the peak demand and causes the peak load plants
o operate, which have significantly higher electricity generation
ost.

.4. Renewable power source and uncertainties

In this study, electric power from a wind farm is assumed to be
art of the grid. The National Renewable Energy Laboratory (NREL)
rovides forecasted and observed wind power datasets for many
laces in the US [21]. For the algorithm verification purposes, we
xamined forecasted and observed wind power profiles from the
atabase. An example is shown in Fig. 3. We  assumed 10% pene-
ration rate of renewable power sources in nominal capacity. The

orecasted profile will be included in the base load generation and
he observed profiles gives uncertainties, the effect of which is mit-
gated by regulation services.

able 1
haracteristics of the power plants categorized by service types.

Services Base load Load following Regulation

Control Feed forward Integral Proportional
Time scale Hour–day 10–100 min  ms–min
Fig. 3. Example wind power profile from the NREL database (June 22nd 2006, site
#  3939).

2.5. Generation cost and CO2 emissions

A service provider typically manages many power plants
that can be categorized into base load plants, intermediate load
plants, and peak load plants. Nuclear and coal power plants are
usually used for the base load, combined cycle power plants for
the intermediate load, and gas turbines for the peak load. In this
cost structure, we take into account only the energy cost so that
the cost of regulation services is not included. The generation
cost curves are based on economic dispatch rules for the service
providers. The instantaneous cost curve for the target grid is
derived using the method reported in [22], as shown in Fig. 4(a).
The carbon dioxide emission curve is achieved by using carbon
dioxide emission tables for different fuel types [23] and plant types
[24,25], as shown in Fig. 4(b). To minimize production cost and
carbon dioxide emission, we combined these two  curves using a
carbon tax concept [26]. The combined cost curve with a carbon
tax ($12 per tonne of CO2) is shown in Fig. 5.

2.6. Objectives and constraints

The first objective is to develop a decentralized algorithm that
charges the EV’s battery as much as possible while minimizing the
generating cost and carbon dioxide emissions of power plants. The
Fig. 4. (a) Power generation cost curve and (b) CO2 emission curve.
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Fig. 5. Combined cost curve, C(P(t)), (Generation cost + CO emission), the carbon
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ax  of $12/tCO2 is used.

oad plants, and the EV charging algorithm should have a frequency
egulation capability.

.7. Approaches

The overall grid system and the charging controller are shown in
ig. 6. To achieve the design objectives, we developed a sub-optimal
ontrol algorithm that balances among multiple objectives: min-
mization of the power generation cost and carbon dioxide
missions. The problem was first solved as a linear programming
LP) problem. Subsequently, a near-optimal decentralized control
lgorithm is formulated by emulating the optimal charging pattern
btained from the LP solution. The optimal decentralized control
lgorithm uses a few pieces of information to compute the charging
ower: the forecasted total power demand of the grid, estimated
lug off time, and the battery SOC of the local vehicle.

For frequency regulation, we utilize a frequency droop based
ower control algorithm in order not to degrade the performance
f the load shifting algorithm while keeping the overall control

tructure in a decentralized manner.

Fig. 6. The electricity grid model with the proposed charging controller.
ces 196 (2011) 10369– 10379

3. Load shifting

The design process begins by solving the LP optimal control
problem where all information is available and a central controller
determines the charging power of each EV and the power gener-
ation of each plant. The solution of the control problem provides
important information: the optimal control pattern for each EV.
A decentralized charging control algorithm can then be obtained
by emulating the behavior of the LP solution. The remaining con-
tents of this chapter include: formulation of the optimal control
problem; solution to the problem using LP technique; analysis of
the optimal control patterns; and derivation of the decentralized
control algorithm.

3.1. Formulation of the optimal control problem

The cost function to be minimized is the electricity genera-
tion cost and total carbon dioxide emissions. Given the cost curve,
C(P(t)), shown in Fig. 5, the optimal control problem is defined as
follows:

min
PEV (t,n)

T∑
t=0

C(P(t)), (4)

where

P(t) =
N∑

n=1

PEV (t, n) + PnonEV (t), (5)

C(P(t)) = c1 · min(P(t), L1) + c2 · min(max(P(t) − L1, 0),  L2)

+ c3 · max(P(t) − L1 − L2, 0),  (6)

PnonEV(t) is the non-EV electric load and PEV(t, n) is the control vari-
able for t = 0, 1, 2, . . .,  T, n = 1, 2, 3, . . .,  N. L1 and L2 are the power
levels when the cost curve gets bended and defined in Fig. 5. The
constraints for the optimization problem include

T∑
t=0

PEV (t, n) · �t  = B(n), (7)

0 ≤ PEV (t, n) ≤ PEV lim(t, n), (8)

where B(n) is the total energy to charge the battery of car # n
as much as it can during the plug-in time, for n = 1, 2, 3, . . .,  N, so
that B(n) is given in this optimization formulation. PEVlim(t) is the
charging power limit of the battery, determined as follows:

PEV lim(t, n) =
{

PEV max, when the vehicle n is on-line

0, when the vehicle n is off-line
.  (9)

Eq. (5) represents the total power demand consisting of the non-
EV load and the EV charging load; Eq. (7) requires that all EVs must
be charged as much as unmitigated, which prevents EVs from sac-
rificing charging completion for reducing power generation. Eq. (8)
reflects the fact that the charging power of each EV is limited by the
maximum current, and no vehicle-to-grid power flow is allowed.
Eq. (9) requires that EVs are charged only when they are plugged
in.

When the combined cost curve is not linear then typically a
nonlinear optimization problem with a large number of control

variables needs to be solved, which requires tremendous comput-
ing power. Fortunately, the cost curve is piece-wise linear and has
increasing slope. Therefore, we can use linear programming (LP) to
solve the problem by adding more control variables and constraints.
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N∑
n=1

PEV,SFT (t, n) = L1 + L2 − PnonEV (t). (17)
C. Ahn et al. / Journal of Powe

.2. Solution through linear programming

The formulated optimization problem can be solved by modify-
ng the cost function, as follows:

min
EV (t,n)

T∑
t=0

(c1 · q1(t) + c2 · q2(t) + c3 · q3(t)), (10)

here 0 < c1 < c2 < c3 are defined in Fig. 5. The constraints consist
f linear constraints and conditional constraints. The linear con-
traints are

1(t) + q2(t) + q3(t) =
N∑

n=1

PEV (t, n) + PnonEV (t), (11)

T

t=0

PEV (t, n) = B(n), (12)

 ≤ PEV (t, n) ≤ PEV lim(t, n), (13)

 ≤ q1(t) ≤ L1, 0 ≤ q2(t) ≤ L2, 0 ≤ q3(t). (14)

And the conditional constraints are

if P(t) < L1,

{
q1(t) = P(t),

q2(t) = 0, q3(t) = 0,

if L1 ≤ P(t) < L2,

{
q1(t) = L1,

q2(t) = P(t) − L1, q3(t) = 0,

if P(t) ≥ L1 + L2,

{
q1(t) = L1, q2(t) = L2,

q3(t) = P(t) − L1 − L2,

(15)

here q1(t), q2(t), and q3(t) vary only in the linear ranges of the
iece-wise linear cost curve. The introduction of new variables
ransforms the nonlinear cost function to a linear cost function and
n the meantime adds the conditional constraints. However, these
onditional constraints are not active (the optimal solution does not
xist in the hyper-plane defined by the conditional constraints),
s proved in Appendix.  Therefore, we can ignore the conditional
onstraints and the problem can be solved using a standard linear
rogramming technique.

.3. Optimal results and analysis

The parameters of the optimization problem are as follows:
 = 24 with 1 h step, N = 100 (the two million EVs are grouped into
00 sets). The plug-in time, plug-off time, and the initial SOCs are
andomly generated based on the commute pattern, and their val-
es are assumed to be known to the centralized controller. The
roblem is solved using the LP solver in MATLAB (linprog) and the
esults are plotted in Fig. 7. In the optimal solution, the additional
oad due to EV charging fills the valley of the demand profile during
he night so that the peak power plant does not need to operate. If
e compare the demand profile of Fig. 7(b) with that of Fig. 2, we

an see that the EV charging demand is shifted to early morning
ours. Fig. 7(c) shows examples of optimal charging patterns. The
Vs begin to charge as soon as the valley period begins, which is
efined as the time when the base demand is below the peak load

ine, where we do not need to turn on the peak load plants. The EVs

lso finish their charging when the valley period ends. The charging
ower depends on the battery SOC: the EV with a lower SOC uses
igher charging power. The charging power also depends on the
mount of available grid power.
Fig. 7. Optimal results obtained from LP: (a) the charging pattern of EVs; (b) the
resulting electric power demand; and (c) three examples of charging patterns for
different SOC levels.

3.4. Development of the decentralized control algorithm

To analyze the charging pattern, the EVs are grouped by the
plug-off time, as shown in Fig. 8. The charging power of EVs that
have the same plug-off time shows linear dependency to SOC, and
the sensitivity changes over time. As a result, the charging power
can be expressed as:

PEV,SFT (t, n) = K(t, n) · (SOCmax − SOC(t, n)), (16)

where SOCmax is the maximum allowable SOC that is 0.85 in this
problem. The gradient K(t, n) is computed from the LP solutions
and plotted in Fig. 9. The gradient increases as the time to plug-off
decreases, and as the time to valley-end decreases. Also, the amount
of available cheap power affects K(t, n).

Another way to derive PEV,SFT(t, n) is based on the observation
that charging power is highly related to the amount of available
cheap power, which is defined as L1 + L2 − PnonEV(t). For perfect
valley-filling, the following equation must hold:
Fig. 8. Optimal charging power from the LP solutions was found to be proportional
to  “SOC deficit”.



10374 C. Ahn et al. / Journal of Power Sources 196 (2011) 10369– 10379

F

T
a

P

w
P
c

P

w
b
f

S

w
o
b

R

a

P

w
s
p

K

w

a
t
g
A
E
p
v
t
s
a
g

ig. 9. Charging gradient function, K(t, n), computed using the optimal solutions.

hen, the average charging power per vehicle at time t is calculated
s follows:

¯EV,SFT (t) =
∑N

n=1PEV,SFT (t, n)

NEV (t)
= L1 + L2 − PnonEV (t)

NEV (t)
, (18)

here NEV(t) is the number of EVs that are plugged in. In this stage,
nonEV(t) and NEV(t) are assumed known for all t. Using this average
harging power, we propose another charging algorithm:

EV,SFT (t, n) = R(t, n) · P̄EV,SFT (t), (19)

here R(t, n) is the charging gain. Because the EV’s battery should
e fully charged by the end of valley hours or the plug-off time, the
ollowing equation must hold:

OCmax − SOC(t, n) = 1
C(n)

∫ Tn

t

PEV (�, n) · d�

= 1
C(n)

∫ Tn

t

R(�, n) · P̄EV,SFT (�) · d�, (20)

here Tn = min(tplug-off,n, tvalley-end) and C(n) is the battery capacity
f EV #n. Because we do not know future R(�, n), it is assumed to
e time invariant and we have:

(t, n) = C(n) · (SOCmax − SOC(t, n))∫ Tend

t
P̄EV,SFT (�) · d�

. (21)

This calculated R(t, n) is assumed to be constant until P̄EV,SFT (t)
nd SOC(t, n) are updated. Plug (21) into (19), we have

EV,SFT (t, n) = C(n) · P̄EV,SFT (t)∫ Tn

t
P̄EV,SFT (�) · d�

(SOCmax − SOC(t, n)), (22)

hich is the equation of the decentralized charging algorithm. We
hould point out that K(t, n) in Eq. (16) can be calculated by com-
aring Eqs. (16) and (22):

(t, n) = C(n) · P̄EV,SFT (t)∫ Tn

t
P̄EV,SFT (�) · d�

, (23)

here P̄EV,SFT (t) = L1 + L2 − PnonEV (t)/NEV (t).
The gradient K(t, n) in Eq. (23) should be verified by comparing

gainst the LP solution. To see the robustness of this gradient func-
ion, two different power profiles are used. Fig. 10 compares the
radient values from the optimization results and from Eq. (23).
n imagined double valley profile is used as a challenging case.
ven though the gradient function was derived using a single valley
rofile, it matches well with LP results calculated from the double
alley profile, which shows the robustness of the gradient func-

ion. The parameters of the controller should be determined by two
eparate players. C(n) is determined by the EV designer and L1 L2
nd NEV(t) should be by the grid operator in consideration of the
eneration cost structure.
Fig. 10. Verification of the robustness of the gradient function K(t, n).

The control algorithm in Eq. (22) can be implemented in a
decentralized fashion, which consists of two  parts: gain and SOC
deficiency. The gain becomes larger when the time to plug-off
is shorter, and when the amount of cheap power is higher. The
dependency on SOC deficiency ensures that vehicles with lower
SOC receive higher charging power. Additionally, the dependencies
show simple proportional relations. To implement this algorithm,
predicted future demand from current time to the end of the valley
hours, and the plug-off time of the vehicle are required. An accu-
rate forecast of non-EV electric load is already available and used
in the power transmission industry, therefore, the end of the prob-
lem horizon (end of valley hours) is readily available. The plug-off
time of individual EV needs to be known, perhaps estimated from
user input or learned from past behaviors. Also, we assume that the
number of EVs connected to the grid can be estimated from histor-
ical data, or from the binary on–off data from their smart chargers.
Therefore, the controller is implementable in a decentralized way
using today’s technology. The control algorithm is simple and the
computation can be done locally. Information from vehicle to grid
is not required—except the binary plug-in data. The only informa-
tion that needs to broadcast from the grid to the vehicles is the
predicted cheap power trajectory.

4. Frequency regulation

Another important attribute of EV charging is its fast response
time. EV batteries have a faster power slew rate than conventional
power generators such as steam turbines. Due to this characteris-
tic, EVs can replace some of the regulation service units. Battery
charging will not be deteriorated by the regulation control because
regulation is a zero-energy service that compensates for minute-
to-minute fluctuations [3].  Long-horizon services (>10 min) such as
load following or energy balancing will continue to be provided by
other power sources.

The regulation control using EV batteries is designed as a fre-
quency droop control:

PEV,REG(t, n) = kf (t)(ω(t, n) − ω0), (24)
where ω(t, n) is the frequency measured by EV # n at time t. kf(t)
is the droop control gain that is time varying and is broadcast by
the grid operator. From the point of view of the grid, the effective
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Fig. 11. The final control structure. Grid operator broadcast signals to each EV. The controller inside the dashed box is located in each EV.
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ain (keff) depends on the number of EVs connected to the grid, as
ollows:

REG(t) =
N∑

n=1

PEV,REG(t, n) = NEV (t)kf (t)(ω(t, n) − ω0)

= keff (t)(ω(t, n) − ω0). (25)

 constant effective gain is preferable for consistent regulation
erformance. However, when NEV(t) is very small, constant effec-
ive gain cannot be achieved. Therefore, we propose the following
daptive gain:

f (t) = Kf

NEV,NOM(t)
, (26)

here Kf is the desired overall gain and NEV,NOM(t) is the nominal
umber of vehicles that only need to be updated periodically. Kf is
omplementary to kp in Eq. (2) and they determine the amount of
he frequency droop. The control parameters of regulation plants,
uch as Kf, kp, are usually determined from the maximum available
egulation power dividend by the maximum allowable frequency
roop. Mismatch between the true number of EVs and its nominal
alue will cause slight variation in effective regulation gain. When
he total number of EVs is small, they may  not provide adequate
egulation capability.

. Algorithm integration

The load shifting algorithm and the regulation algorithm were
esigned to achieve their individual objectives. However, in con-
ept, the algorithms will not interfere with each other because
f their time-scale separation. Therefore, the two  controllers are
ombined in a simple way:

EV (t, n) = sat{PEV,SFT (t, n) + PEV,REG(t, n),
− PEV lim(t), PEV lim(t), }, (27)

here sat is a saturation function that takes into account the power
imit of EV batteries. The overall control structure is shown in
ig. 11.  The controller in the grid operator side computes P̄EV,SFT (t)
and kf(t) to broadcast to EVs. The broadcasting is done at a very low
time frequency such as every ten minutes. The controller in the EV
charger computes charging power for load shifting and for regula-
tion using local measurement signals: SOC and AC frequency. This
controller performs computation at a higher rate such as every 10 s.

6. Algorithm verification

The decentralized control algorithm was verified using six
simulation scenarios categorized into three groups, as summarized
in Table 2. The first group was  designed to verify the performance
of the load shifting algorithm under perfect information. Scenario
1 uses the demand profile shown in Fig. 1. Scenario 2 uses a
demand profile that has double valleys shown in Fig. 10(b). The
second group was designed to verify the performance of the load
shifting controller under imperfect estimation. Scenario 3 uses the
single valley profile with inaccurate NEV(t): the estimated NEV(t) is
assumed to be delayed by 1 h from the true values. Scenario 4 also
uses the same demand profile but the total number of EVs is 50%
higher than the expected (2 million vehicles were expected but 3
million vehicles were plugged in). The last group was designed to
evaluate the integrated algorithm (load shifting and regulation).
Scenario 5 uses the single valley demand profile with a wind
power source. Scenario 6 uses the same demand profile and the
wind power source but the regulation controller was  turned off
to investigate the effect of EV’s regulation operation. In these
scenarios, we assumed perfect estimation except wind power
forecasting. The rest of the simulation conditions were common
for every scenario as follows: the simulation horizon was  24 h;
the time step was 10 s; the plug-in/off time and the initial SOCs
were randomly generated but identical for each simulation; and,
the number of vehicle fleets was  1000, which means that each one
represented 2000 EVs (2500 EVs for Scenario 4).
6.1. Load shifting algorithm with perfect estimation

The simulation results for Scenarios 1 and 2 are plotted in
Fig. 12 and the performance summary is shown in Table 3. In both
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Table  2
Simulation scenarios to verify the performance of the proposed control algorithms.

Scenario Controller NEV(t) estimation Renewable power Demand profile

1 Load shifting Perfect No Single valley
2 Load  shifting Perfect No Double valley
3 Load shifting 1 h delayed No Single valley
4  Load shifting 25% less No Single valley
5  Shifting + regulation Perfect Yes Single valley
6  Load shifting Perfect Yes Single valley
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In summary, as shown in Fig. 15,  the decentralized charging
cenarios, the baseline controller allows unmitigated charging.
herefore, it achieved the best battery charging performance but
he power generation cost was much higher than the controlled
ases. The decentralized load shifting algorithm effectively shifted
he peak load into the valley, achieving lower generation cost (5–8%
eduction) without losing the battery charging performance.

.2. Load shifting algorithm with imperfect estimation

Scenario 3 was designed to test the robustness against num-
er of electrified vehicles, NEV(t). We  assumed that the estimated
ehicle number was a time delayed version of the actual num-
er and the results are shown in Fig. 13(a) and (b). Even though
he inaccurate estimation slightly degraded the charging perfor-

ance (from 99.99% of Scenario 1 to 99.93% of Scenario 3) the
alley filling worked well and the degradation was  small. Scenario

 was designed to study the effect of more EVs than expected and
he results are shown in Fig. 13(c) and (d). The expected num-
er of EVs was 2 million but the number of connected EVs was

 million. The required charging energy was much higher than the
nergy available in the valley hours. As a result, the more expen-
ive power source is used. However, battery charging still happens
n an orderly manner and the charging performance was still high
99.92%), as shown in Table 3. These two simulations show that the
erformance of the decentralized load shifting algorithm is quite
obust and vehicle charging completion took priority over other

bjectives. To achieve leveled valley filling in the case of 3 million
Vs, the grid operator has to compute P̄EV,SFT (t) using larger L1 + L2
han in the case of 2 million EVs.

ig. 12. Verification of the load shifting controller under perfect estimation.
6.3. Integrated controller with wind power uncertainties

Simulations with the integrated controller were performed to
evaluate two important aspects: whether the load shifting per-
formance and the final SOC are degraded by integration of the
regulation controller and how the regulation controller is ben-
eficial. Scenario 5 uses the integrated (load shifting + regulation)
algorithm with the single valley demand profile and the wind
power source profile shown in Fig. 3. Scenario 6 uses only the
load shifting controller with the single valley demand profile
and the wind power source. In both scenarios, the forecasted
demand profile and forecasted wind power profile were used to
determine the required power generation from the base plants.
The wind power uncertainties are compensated by the regula-
tion services from the conventional regulation plants and EVs
in Scenario 5 and only by the conventional regulation plants in
Scenario 6.

The results are plotted in Fig. 14 and summarized in Table 4.
The load shifting performance and the charging performance of
Scenario 5 were not degraded compared to those in Scenario 6,
which confirms that the regulation controller does not degrade the
load shifting performance and the charging performance, which
is expected. Furthermore, the regulation controller improved the
frequency regulation with reduced reliance on conventional reg-
ulation power plants, which indicates the possibility of cost
reduction in regulation services.
control algorithm reduces generation cost and CO2 emissions with-
out degrading EV charging completion rates. In the meantime, the
algorithm contributes to the frequency regulation services. The

Fig. 13. Verification of the load shifting controller under imperfect: (a) when NEV(t)
estimation is inaccurate, (b) number of total EVs are more than expected.
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Table  3
Performance of the load shifting algorithm compared to the baseline and LP optimal results.

Scenario Controller Generation costa CO2 emissiona Charging performanceb (%)

Baseline 1 1 100
1 LP  optimal 0.907 0.969 100

Decentralized 0.923 0.976 99.99
Baseline 1 1 100

2  LP optimal 0.908 0.970 100
Decentralized 0.948 0.985 99.98

3  Baseline 1 1 100
Decentralized 0.923 0.976 99.93

4 Baseline 1 1 100
Decentralized 0.925 0.976 99.92

a Generation cost and CO2 emission are normalized by the values of the baseline cases.
b Charging performance is the sum of all served SOCs divided by the sum of all SOCs of the baseline controller case.

Table  4
Performance of the integrated algorithm compared to the load shifting algorithm only case.

Scenario Controller Generation cost Charging
performance (%)

Regulation
powera (MW)

Frequency
deviationb (Hz)

5 Shifting + Regulation 0.918 99.98 0.116 0.069
6 Load  shifting 0.917 99.98 0.146 0.087

a Regulation power is the root-mean-squared power output of the conventional regula
b Frequency deviation is the root-mean-squared frequency deviation from 60 Hz.

Fig. 14. Verification of the integrated algorithm: the performance of the integrated
algorithm compared to the load shifting algorithm only case.

Fig. 15. Comparison of performance indices normalized by the unmitigated case
(Scenario 5). The performance of frequency regulation is not applicable to the LP
optimal results.
tion plant.

load shifting performances of decentralized controller are closed
to the LP optimal performances and the frequency regulation per-
formance is four times better than the unmitigated case while
reducing regulation power by 75%.

7. Conclusions

This paper presents the design of a decentralized charging
algorithm for electrified vehicles. The algorithm had two  objec-
tives: load shifting for efficiency and frequency regulation for
power quality. The load shifting algorithm mimics the behavior
of a global optimal solution obtained through the linear program-
ming technique. The developed load shifting algorithm requires
four pieces of information: forecasted base load profile, estimated
number of plugged vehicles, estimated plug-off time, and the
battery SOC of the vehicle being charged. The regulation algo-
rithm is based on power-frequency droop. Simulation studies show
that the proposed algorithm minimizes electricity generation cost
and CO2 emissions and reduces the usage of the conventional
regulation power plants without compromising battery charging
performance.
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Appendix.

Suppose an optimal solution exists when the conditional con-
straints shown in Eq. (15) are violated at t1. Note that the following
conditions hold at any time.

P(t1) = q1(t1) + q2(t1) + q3(t1), 0 ≤ q1(t) ≤ L1,

0 ≤ q2(t) ≤ L2, 0 ≤ q3(t), 0 < c1 < c2 < c3.
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(i) 0 ≤ P(t1) ≤ L1

J∗ =
t1−1∑
t=0

C(P(t)) +
T∑

t=t1+1

C(P(t)) + c1q1(t1) + c2q2(t1) + c3q3(t1

=
t1−1∑
t=0

C(P(t)) +
T∑

t=t1+1

C(P(t)) + c1P(t1) − c1P(t1) + c1q1(t1) +

=
t1−1∑
t=0

C(P(t)) +
T∑

t=t1+1

C(P(t)) + c1P(t1) − c1(q1(t1) + q2(t1) +

=
t1−1∑
t=0

C(P(t)) +
T∑

t=t1+1

C(P(t)) + c1P(t1) + (c2 − c1)q2(t1) + (c

The equality holds only when q2(t1) = q3(t1) = 0. There-
fore, the optimal solution is achieved when q1(t1) = P(t1) and
q2(t1) = q3(t1) = 0.

(ii) L1 ≤ P(t1) ≤ L1 + L2

J∗ =
t1−1∑
t=0

C(P(t)) +
T∑

t=t1+1

C(P(t)) + c1q1(t1) + c2q2(t1) + c3q3(t1

=
t1−1∑
t=0

C(P(t)) +
T∑

t=t1+1

C(P(t)) + c1L1 + c2L2 + c3(P(t1) − L1 −

=
t1−1∑
t=0

C(P(t)) +
T∑

t=t1+1

C(P(t)) + c1L1 + c2L2 + c3(P(t1) − L1 −

≥
t1−1∑
t=0

C(P(t)) +
T∑

t=t1+1

C(P(t)) + c1L1 + c2L2 + c3(P(t1) − L

The equality holds only when q1(t1) = L1, q3(t1) = 0. There-
fore, the optimal solution is achieved when q1(t1) = L1,
q2(t1) = P(t1) − L1, and q3(t1) = 0.

iii) P(t1) ≥ L1 + L2

J∗ =
t1−1∑
t=0

C(P(t)) +
T∑

t=t1+1

C(P(t)) + c1q1(t1) + c2q2(t1) + c3q3(t1)

=
t1−1∑
t=0

C(P(t)) +
T∑

t=t1+1

C(P(t)) + c1L1 + c2L2 + c3(P(t1) − L1 − L2) − c1L1 − c2

=
t1−1∑
t=0

C(P(t))+
T∑

t=t1+1

C(P(t))+c1L1+c2L2+c3(P(t1) − L1−L2)+(c3−c1)(L1−q1

The equality holds only when q1(t1) = L1, q2(t1) = L2. Therefore,
he optimal solution is achieved when q1(t1) = L1, q2(t1) = L2, and
3(t1) = P(t1) − L1 − L2.

The results of (i)–(iii) contradict the assumption, which implies
hat the conditional constraints are satisfied when the optimal solu-
ion exists, in other words, the constraints are not active.
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